Work in progress

Here, I list papers that have not been published – so comments or feedback are greatly appreciated! All items listed here are subject to change; please do not quote or cite these papers without permission.

La Bohume

There has recently been debate in the literature over whether the metaphysical doctrine popularly known as Humean supervenience can be reconciled—in whole or in part—with certain empirical facts about quantum entanglement. In this paper, I undertake a critical analysis of Humean efforts to effect such a reconciliation.


Ramsey equivalence

In the literature over the Ramsey-sentence approach to structural realism, there is often debate over whether structural realists can legitimately restrict the range of the second-order quantifiers, in order to avoid the Newman problem. In this paper, I argue that even if they are allowed to, it won’t help: even if the Ramsey sentence is interpreted using such restricted quantifiers, it is still an implausible candidate to capture a theory’s structural content. To do so, I use the following observation: if a Ramsey sentence did encode a theory’s structural content, then two theories would be structurally equivalent just in case they have logically equivalent Ramsey sentences. I then argue that this criterion for structural equivalence is implausible, even where frame or Henkin semantics are used.


Algebraic structuralism

This essay is about how the notion of “structure” in ontic structuralism might be made precise. More specifically, my aim is to make precise the idea that the structure of the world is (somehow) given by the relations inhering in the world, in such a way that the relations are ontologically prior to their relata. The central claim is the following: one can do so by giving due attention to the relationships that hold between those relations, by making use of certain notions from algebraic logic.


On gravitational energy in Newtonian theories (with Jim Weatherall)

There are well-known problems associated with the idea of (local) gravitational energy in general relativity. We offer a new perspective on those problems by comparison with Newtonian gravitation, and particularly geometrized Newtonian gravitation (i.e., Newton-Cartan theory). We show that there is a natural candidate for the energy density of a Newtonian gravitational field. But we observe that this quantity is gauge dependent, and that it cannot be defined in the geometrized (gauge-free) theory without introducing further structure. We then address a potential response by showing that there is an analogue to the Weyl tensor in geometrized Newtonian gravitation.